Relationship between Google search and the Vietcombank stock

Authors

  • Tien Phat Pham Tomas Bata University in Zlín
  • Sinh Duc Hoang Ho Chi Minh City University of Foreign Languages and Information Technology (HUFLIT)
  • Boris Popesko Tomas Bata University in Zlin
  • Sarfraz Hussain Government Graduate College, Liqat Road Sahiwal Punjab
  • Abdul Quddus Tomas Bata University in Zlin

DOI:

https://doi.org/10.15549/jeecar.v8i4.748

Keywords:

Google Search, Vietcombank, VAR Granger, Copula

Abstract

This study aims to understand the relationship between Google search and the Vietcombank stock price movement. Our weekly data consist of Google search variables and the Vietcombank variables extracted and standardized from Vietstock and Google Trend from April 2016 to April 2021. We apply the VAR Granger and Copulas approach to analyze the link between Google search and the price of Vietcombank stock. Results show that the connection between Google searches and the price of  Vietcombank stock did not persist in the long run. Moreover, the evidence supporting the Granger causality between Google searches and the Vietcombank stock price was weak. Finally, the trading name (term “Vietcombank”) was preferred by Google search users over the code “VCB,” and the trading volume and Google search simultaneously increased within the sample period.

References

Bank, M., Larch, M., & Peter, G. (2011). Google search volume and its influence on liquidity and returns of German stocks. Financial Markets and Portfolio Management, 25(3), 239–264. https://doi.org/10.1007/s11408-011-0165-y DOI: https://doi.org/10.1007/s11408-011-0165-y

Bijl, L., Kringhaug, G., Molnár, P., & Sandvik, E. (2016). Google searches and stock returns. International Review of Financial Analysis, 45, 150–156. https://doi.org/10.1016/j.irfa.2016.03.015 DOI: https://doi.org/10.1016/j.irfa.2016.03.015

Coyne, S., Madiraju, P., & Coelho, J. (2017). Forecasting Stock Prices Using Social Media Analysis. 2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech, 1031–1038. https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.169 DOI: https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.169

Desagre, C., & D’Hondt, C. (2021). Googlization and retail trading activity. Journal of Behavioral and Experimental Finance, 29, 1–14. https://doi.org/10.1016/j.jbef.2020.100453 DOI: https://doi.org/10.1016/j.jbef.2020.100453

Ekinci, C., & Bulut, A. E. (2021). Google search and stock returns: A study on BIST 100 stocks. Global Finance Journal, 47(March), 1–13. https://doi.org/10.1016/j.gfj.2020.100518 DOI: https://doi.org/10.1016/j.gfj.2020.100518

Fama, E. F., Fisher, L., Jensen, M. C., & Roll, R. (1969). The Adjustment of Stock Prices to New Information. International Economic Review, 10(1), 1–21. https://doi.org/10.2307/2525569 DOI: https://doi.org/10.2307/2525569

Fama, E. F., & French, K. R. (1997). Industry costs of equity. Journal of Financial Economics, 43(2), 153–193. https://doi.org/10.1016/S0304-405X(96)00896-3 DOI: https://doi.org/10.1016/S0304-405X(96)00896-3

Hasebe, T. (2013). Copula-Based Maximum-Likelihood Estimation of Sample-Selection Models. The Stata Journal: Promoting Communications on Statistics and Stata, 13(3), 547–573. https://doi.org/10.1177/1536867X1301300307 DOI: https://doi.org/10.1177/1536867X1301300307

Huynh, T. L. D. (2019). Which Google keywords influence entrepreneurs? Empirical evidence from Vietnam. Asia Pacific Journal of Innovation and Entrepreneurship, 13(2), 214–230. https://doi.org/10.1108/APJIE-11-2018-0063 DOI: https://doi.org/10.1108/APJIE-11-2018-0063

Huynh, T. L. D., Nasir, M. A., Nguyen, S. P., & Duong, D. (2020). An assessment of contagion risks in the banking system using non-parametric and Copula approaches. Economic Analysis and Policy, 65, 105–116. https://doi.org/10.1016/j.eap.2019.11.007 DOI: https://doi.org/10.1016/j.eap.2019.11.007

Huynh, T. L. D., Nguyen, S. P., & Duong, D. (2018). Contagion risk measured by return among cryptocurrencies. Studies in Computational Intelligence, 760(August 2017), 987–998. https://doi.org/10.1007/978-3-319-73150-6_71 DOI: https://doi.org/10.1007/978-3-319-73150-6_71

Ivanov, V., & Killian, L. (2001). A Practitioner’s guide to Lag-order selection for vector autoregressions. In Centre for Economic Policy Research. https://repec.cepr.org/repec/cpr/ceprdp/Dp2685.pdf

Johansen, S. (1988). Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control, 12(2–3), 231–254. https://doi.org/10.1016/0165-1889(88)90041-3 DOI: https://doi.org/10.1016/0165-1889(88)90041-3

Kim, N., Lu?ivjanská, K., Molnár, P., & Villa, R. (2019). Google searches and stock market activity: Evidence from Norway. Finance Research Letters, 28(May 2018), 208–220. https://doi.org/10.1016/j.frl.2018.05.003 DOI: https://doi.org/10.1016/j.frl.2018.05.003

Kim, T., & Kim, H. Y. (2019). Forecasting stock prices with a feature fusion LSTM-CNN model using different representations of the same data. PLOS ONE, 14(2), 1–23. https://doi.org/10.1371/journal.pone.0212320 DOI: https://doi.org/10.1371/journal.pone.0212320

Kiymaz, H., & Berument, H. (2003). The day of the week effect on stock market volatility and volume: International evidence. Review of Financial Economics, 12(4), 363–380. https://doi.org/10.1016/S1058-3300(03)00038-7 DOI: https://doi.org/10.1016/S1058-3300(03)00038-7

Lütkepohl, H. (2005). New Introduction to Multiple Time Series Analysis. In Springer Science & Business Media. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-27752-1 DOI: https://doi.org/10.1007/978-3-540-27752-1

Nasir, M. A., Huynh, T. L. D., Nguyen, S. P., & Duong, D. (2019). Forecasting cryptocurrency returns and volume using search engines. Financial Innovation, 5(1), 1–13. https://doi.org/10.1186/s40854-018-0119-8 DOI: https://doi.org/10.1186/s40854-018-0119-8

Nguyen, C. P., Schinckus, C., & Nguyen, H. T. V. (2019). Google search and stock returns in emerging markets. Borsa Istanbul Review, 19(4), 288–296. https://doi.org/10.1016/j.bir.2019.07.001 DOI: https://doi.org/10.1016/j.bir.2019.07.001

Salisu, A. A., & Vo, X. V. (2020). Predicting stock returns in the presence of COVID-19 pandemic: The role of health news. International Review of Financial Analysis, 71(June), 1–10. https://doi.org/10.1016/j.irfa.2020.101546 DOI: https://doi.org/10.1016/j.irfa.2020.101546

Sanchez, M. G. (2021). The influence of Google search index on stock markets: an analysis of causality in-mean and variance. Review of Behavioral Finance, 13(2), 202–226. https://doi.org/10.1108/RBF-01-2020-0011 DOI: https://doi.org/10.1108/RBF-01-2020-0011

Swamy, V., & Dharani, M. (2019). Investor attention using the Google search volume index – impact on stock returns. Review of Behavioral Finance, 11(1), 55–69. https://doi.org/10.1108/RBF-04-2018-0033 DOI: https://doi.org/10.1108/RBF-04-2018-0033

Trivedi, P. K., & Zimmer, D. M. (2007). Copula Modeling: An Introduction for Practitioners. Now Publisher Inc.

Truong, D. L., Lanjouw, G., & Lensink, R. (2010). Stock-market efficiency in thin-trading markets: the case of the Vietnamese stock market. Applied Economics, 42(27), 3519–3532. https://doi.org/10.1080/00036840802167350 DOI: https://doi.org/10.1080/00036840802167350

Truong, L. D., Nguyen, A. T. K., & Vo, D. Van. (2020). Index Future Trading and Spot Market Volatility in Frontier Markets: Evidence from Ho Chi Minh Stock Exchange. Asia-Pacific Financial Markets, 1–14. https://doi.org/10.1007/s10690-020-09325-1 DOI: https://doi.org/10.1007/s10690-020-09325-1

Vo, X. V., & Truong, Q. B. (2018). Does momentum work? Evidence from Vietnam stock market. Journal of Behavioral and Experimental Finance, 17, 10–15. https://doi.org/10.1016/j.jbef.2017.12.002 DOI: https://doi.org/10.1016/j.jbef.2017.12.002

Published

2021-12-15

How to Cite

Pham, T. P., Hoang, S. D., Popesko, B., Hussain, S., & Quddus, A. (2021). Relationship between Google search and the Vietcombank stock. Journal of Eastern European and Central Asian Research (JEECAR), 8(4), 527–540. https://doi.org/10.15549/jeecar.v8i4.748