Relationship between Google search and the Vietcombank stock
DOI:
https://doi.org/10.15549/jeecar.v8i4.748Keywords:
Google Search, Vietcombank, VAR Granger, CopulaAbstract
This study aims to understand the relationship between Google search and the Vietcombank stock price movement. Our weekly data consist of Google search variables and the Vietcombank variables extracted and standardized from Vietstock and Google Trend from April 2016 to April 2021. We apply the VAR Granger and Copulas approach to analyze the link between Google search and the price of Vietcombank stock. Results show that the connection between Google searches and the price of Vietcombank stock did not persist in the long run. Moreover, the evidence supporting the Granger causality between Google searches and the Vietcombank stock price was weak. Finally, the trading name (term “Vietcombank”) was preferred by Google search users over the code “VCB,” and the trading volume and Google search simultaneously increased within the sample period.
References
Bank, M., Larch, M., & Peter, G. (2011). Google search volume and its influence on liquidity and returns of German stocks. Financial Markets and Portfolio Management, 25(3), 239–264. https://doi.org/10.1007/s11408-011-0165-y DOI: https://doi.org/10.1007/s11408-011-0165-y
Bijl, L., Kringhaug, G., Molnár, P., & Sandvik, E. (2016). Google searches and stock returns. International Review of Financial Analysis, 45, 150–156. https://doi.org/10.1016/j.irfa.2016.03.015 DOI: https://doi.org/10.1016/j.irfa.2016.03.015
Coyne, S., Madiraju, P., & Coelho, J. (2017). Forecasting Stock Prices Using Social Media Analysis. 2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech, 1031–1038. https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.169 DOI: https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.169
Desagre, C., & D’Hondt, C. (2021). Googlization and retail trading activity. Journal of Behavioral and Experimental Finance, 29, 1–14. https://doi.org/10.1016/j.jbef.2020.100453 DOI: https://doi.org/10.1016/j.jbef.2020.100453
Ekinci, C., & Bulut, A. E. (2021). Google search and stock returns: A study on BIST 100 stocks. Global Finance Journal, 47(March), 1–13. https://doi.org/10.1016/j.gfj.2020.100518 DOI: https://doi.org/10.1016/j.gfj.2020.100518
Fama, E. F., Fisher, L., Jensen, M. C., & Roll, R. (1969). The Adjustment of Stock Prices to New Information. International Economic Review, 10(1), 1–21. https://doi.org/10.2307/2525569 DOI: https://doi.org/10.2307/2525569
Fama, E. F., & French, K. R. (1997). Industry costs of equity. Journal of Financial Economics, 43(2), 153–193. https://doi.org/10.1016/S0304-405X(96)00896-3 DOI: https://doi.org/10.1016/S0304-405X(96)00896-3
Hasebe, T. (2013). Copula-Based Maximum-Likelihood Estimation of Sample-Selection Models. The Stata Journal: Promoting Communications on Statistics and Stata, 13(3), 547–573. https://doi.org/10.1177/1536867X1301300307 DOI: https://doi.org/10.1177/1536867X1301300307
Huynh, T. L. D. (2019). Which Google keywords influence entrepreneurs? Empirical evidence from Vietnam. Asia Pacific Journal of Innovation and Entrepreneurship, 13(2), 214–230. https://doi.org/10.1108/APJIE-11-2018-0063 DOI: https://doi.org/10.1108/APJIE-11-2018-0063
Huynh, T. L. D., Nasir, M. A., Nguyen, S. P., & Duong, D. (2020). An assessment of contagion risks in the banking system using non-parametric and Copula approaches. Economic Analysis and Policy, 65, 105–116. https://doi.org/10.1016/j.eap.2019.11.007 DOI: https://doi.org/10.1016/j.eap.2019.11.007
Huynh, T. L. D., Nguyen, S. P., & Duong, D. (2018). Contagion risk measured by return among cryptocurrencies. Studies in Computational Intelligence, 760(August 2017), 987–998. https://doi.org/10.1007/978-3-319-73150-6_71 DOI: https://doi.org/10.1007/978-3-319-73150-6_71
Ivanov, V., & Killian, L. (2001). A Practitioner’s guide to Lag-order selection for vector autoregressions. In Centre for Economic Policy Research. https://repec.cepr.org/repec/cpr/ceprdp/Dp2685.pdf
Johansen, S. (1988). Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control, 12(2–3), 231–254. https://doi.org/10.1016/0165-1889(88)90041-3 DOI: https://doi.org/10.1016/0165-1889(88)90041-3
Kim, N., Lu?ivjanská, K., Molnár, P., & Villa, R. (2019). Google searches and stock market activity: Evidence from Norway. Finance Research Letters, 28(May 2018), 208–220. https://doi.org/10.1016/j.frl.2018.05.003 DOI: https://doi.org/10.1016/j.frl.2018.05.003
Kim, T., & Kim, H. Y. (2019). Forecasting stock prices with a feature fusion LSTM-CNN model using different representations of the same data. PLOS ONE, 14(2), 1–23. https://doi.org/10.1371/journal.pone.0212320 DOI: https://doi.org/10.1371/journal.pone.0212320
Kiymaz, H., & Berument, H. (2003). The day of the week effect on stock market volatility and volume: International evidence. Review of Financial Economics, 12(4), 363–380. https://doi.org/10.1016/S1058-3300(03)00038-7 DOI: https://doi.org/10.1016/S1058-3300(03)00038-7
Lütkepohl, H. (2005). New Introduction to Multiple Time Series Analysis. In Springer Science & Business Media. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-27752-1 DOI: https://doi.org/10.1007/978-3-540-27752-1
Nasir, M. A., Huynh, T. L. D., Nguyen, S. P., & Duong, D. (2019). Forecasting cryptocurrency returns and volume using search engines. Financial Innovation, 5(1), 1–13. https://doi.org/10.1186/s40854-018-0119-8 DOI: https://doi.org/10.1186/s40854-018-0119-8
Nguyen, C. P., Schinckus, C., & Nguyen, H. T. V. (2019). Google search and stock returns in emerging markets. Borsa Istanbul Review, 19(4), 288–296. https://doi.org/10.1016/j.bir.2019.07.001 DOI: https://doi.org/10.1016/j.bir.2019.07.001
Salisu, A. A., & Vo, X. V. (2020). Predicting stock returns in the presence of COVID-19 pandemic: The role of health news. International Review of Financial Analysis, 71(June), 1–10. https://doi.org/10.1016/j.irfa.2020.101546 DOI: https://doi.org/10.1016/j.irfa.2020.101546
Sanchez, M. G. (2021). The influence of Google search index on stock markets: an analysis of causality in-mean and variance. Review of Behavioral Finance, 13(2), 202–226. https://doi.org/10.1108/RBF-01-2020-0011 DOI: https://doi.org/10.1108/RBF-01-2020-0011
Swamy, V., & Dharani, M. (2019). Investor attention using the Google search volume index – impact on stock returns. Review of Behavioral Finance, 11(1), 55–69. https://doi.org/10.1108/RBF-04-2018-0033 DOI: https://doi.org/10.1108/RBF-04-2018-0033
Trivedi, P. K., & Zimmer, D. M. (2007). Copula Modeling: An Introduction for Practitioners. Now Publisher Inc.
Truong, D. L., Lanjouw, G., & Lensink, R. (2010). Stock-market efficiency in thin-trading markets: the case of the Vietnamese stock market. Applied Economics, 42(27), 3519–3532. https://doi.org/10.1080/00036840802167350 DOI: https://doi.org/10.1080/00036840802167350
Truong, L. D., Nguyen, A. T. K., & Vo, D. Van. (2020). Index Future Trading and Spot Market Volatility in Frontier Markets: Evidence from Ho Chi Minh Stock Exchange. Asia-Pacific Financial Markets, 1–14. https://doi.org/10.1007/s10690-020-09325-1 DOI: https://doi.org/10.1007/s10690-020-09325-1
Vo, X. V., & Truong, Q. B. (2018). Does momentum work? Evidence from Vietnam stock market. Journal of Behavioral and Experimental Finance, 17, 10–15. https://doi.org/10.1016/j.jbef.2017.12.002 DOI: https://doi.org/10.1016/j.jbef.2017.12.002
Downloads
Published
How to Cite
Issue
Section
License
The JEECAR journal allows the author(s) to hold the copyright and publishing rights of their own manuscript without restrictions.
This journal applies the Creative Attribution Common License to works we publish, and allows reuse and remixing of its content, in accordance with a CC-BY 4.0 license.
Authors are free to: Share — copy and redistribute the material in any medium or format and Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Under the following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions — The author may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
The JEECAR Journal is committed to the editorial principles of all aspects of publication ethics and publication malpractice as assigned by the Committee on Public Ethics.